
Information Theory Primer
With an Appendix (see section 1) on Logarithms

Postscript version: ftp://ftp.ncifcrf.gov/pub/delila/primer.ps
web versions: http://www.lecb.ncifcrf.gov/ � toms/paper/primer/

Thomas D. Schneider
�

version = 2.57 of primer.tex 2005 Mar 15

This primer is written for molecular biologists who are unfamiliar with information theory.
Its purpose is to introduce you to these ideas so that you can understand how to apply them to
binding sites [1, 2, 3, 4, 5, 6, 7, 8, 9]. Most of the material in this primer can also be found
in introductory texts on information theory. Although Shannon’s original paper on the theory of
information [10] is sometimes difficult to read, at other points it is straight forward. Skip the hard
parts, and you will find it enjoyable. Pierce later published a popular book [11] which is a great
introduction to information theory. Other introductions are listed in reference [1]. A workbook that
you may find useful is reference [12]. Shannon’s complete collected works have been published
[13]. Information about ordering this book is given in

http://www.lecb.ncifcrf.gov/ � toms/bionet.info-theory.faq.html
#REFERENCES-Information Theory

Other papers and documentation on programs can be found at

http://www.lecb.ncifcrf.gov/ � toms/

Note: If you have trouble getting through one or more steps in this primer, please send email
to me describing the exact place(s) that you had the problem. If it is appropriate, I will modify the
text to smooth the path. My thanks go to the many people whose stubbed toes led to this version.

�
National Cancer Institute, Frederick Cancer Research and Development Center, Laboratory of Experimental and

Computational Biology, National Cancer Institute, P. O. Box B, Building 144, Room 469, Frederick, MD 21702.
email address: toms@ncifcrf.gov. http://www.lecb.ncifcrf.gov/ � toms/ This text originated as chapter II of my PhD
thesis: “The Information Content of Binding Sites on Nucleotide Sequences”, University of Colorado, 1984. As a U.
S. government work, this document cannot be copyrighted.

1

Tom Schneider’s Information Theory Primer 2

Information and Uncertainty
Information and uncertainty are technical terms that describe any process that selects one or

more objects from a set of objects. We won’t be dealing with the meaning or implications of
the information since nobody knows how to do that mathematically. Suppose we have a device
that can produce 3 symbols, A, B, or C. As we wait for the next symbol, we are uncertain as to
which symbol it will produce. Once a symbol appears and we see it, our uncertainty decreases,
and we remark that we have received some information. That is, information is a decrease in
uncertainty. How should uncertainty be measured? The simplest way would be to say that we have
an “uncertainty of 3 symbols”. This would work well until we begin to watch a second device at
the same time, which, let us imagine, produces symbols 1 and 2. The second device gives us an
“uncertainty of 2 symbols”. If we combine the devices into one device, there are six possibilities,
A1, A2, B1, B2, C1, C2. This device has an “uncertainty of 6 symbols”. This is not the way
we usually think about information, for if we receive two books, we would prefer to say that we
received twice as much information than from one book. That is, we would like our measure to be
additive.

It’s easy to do this if we first take the logarithm of the number of possible symbols because
then we can add the logarithms instead of multiplying the number of symbols. In our example,
the first device makes us uncertain by log

�
3 � , the second by log

�
2 � and the combined device by

log
�
3 ��� log

�
2 �	� log

�
6 � . The base of the logarithm determines the units. When we use the base 2

the units are in bits (base 10 gives digits and the base of the natural logarithms, e, gives nats [14]
or nits [15]). Thus if a device produces one symbol, we are uncertain by log2 1 � 0 bits, and we
have no uncertainty about what the device will do next. If it produces two symbols our uncertainty
would be log2 2 � 1 bit. In reading an mRNA, if the ribosome encounters any one of 4 equally
likely bases, then the uncertainty is 2 bits.

So far, our formula for uncertainty is log2
�
M � , with M being the number of symbols. The next

step is to extend the formula so it can handle cases where the symbols are not equally likely. For
example, if there are 3 possible symbols, but one of them never appears, then our uncertainty is
1 bit. If the third symbol appears rarely relative to the other two symbols, then our uncertainty
should be larger than 1 bit, but not as high as log2

�
3 � bits. Let’s begin by rearranging the formula

like this:

log2
�
M � �
 log2

�
M � 1 � (1)�
 log2
� 1
M

��
 log2
�
P �

so that P � 1 � M is the probability that any symbol appears. (If you don’t remember this trick of
‘pulling the sign out’, recall that logMb � b logM and let b �
 1.)

Now let’s generalize this for various probabilities of the symbols, Pi, so that the probabilities
sum to 1:

M

∑
i 1

Pi � 1 � (2)

Tom Schneider’s Information Theory Primer 3

(Recall that the ∑ symbol means to add the Pi together, for i starting at 1 and ending at M.) The
surprise that we get when we see the ith kind of symbol was called the “surprisal” by Tribus [16]
and is defined by analogy with � log2 P to be1

ui � � log2 � Pi ��� (3)

For example, if Pi approaches 0, then we will be very surprised to see the ith symbol (since it
should almost never appear), and the formula says ui approaches ∞. On the other hand, if Pi=1,
then we won’t be surprised at all to see the ith symbol (because it should always appear) and ui =
0.

Uncertainty is the average surprisal for the infinite string of symbols produced by our device.
For the moment, let’s find the average for a string of length N that has an alphabet of M symbols.
Suppose that the ith type of symbol appears Ni times so that

N � M

∑
i � 1

Ni � (4)

There will be Ni cases where we have surprisal ui. The average surprisal for the N symbols is:

∑M
i � 1 Niui

∑M
i � 1 Ni

� (5)

By substituting N for the denominator and bringing it inside the upper sum, we obtain:

M

∑
i � 1

Ni

N
ui (6)

If we do this measure for an infinite string of symbols, then the frequency Ni � N becomes Pi, the
probability of the ith symbol. Making this substitution, we see that our average surprisal (H) would
be:2

H � M

∑
i � 1

Piui � (7)

Finally, by substituting for ui, we get Shannon’s famous general formula for uncertainty:

H � � M

∑
i � 1

Pi log2 Pi (bits per symbol). (8)

Shannon got to this formula by a much more rigorous route than we did, by setting down
several desirable properties for uncertainty, and then deriving the function. Hopefully the route we
just followed gives you a feeling for how the formula works.

1Why use ‘u’ as the symbol for surprisal? S is the standard symbol for entropy and that is not easily distinguished
from s, so the ‘u’ stands for uncertainty . . . we are running out of symbols in molecular information theory!

2The name H comes through Shannon from Boltzmann’s H-Theorem in thermodynamics. I don’t know why this
symbol was chosen by Boltzmann.

Tom Schneider’s Information Theory Primer 4

To see how the H function looks, we can plot it for the case of two symbols. This is shown
below3:

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
 0.0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1.0

probability of one symbol

uncertainty, H (bits)

Notice that the curve is symmetrical, and rises to a maximum when the two symbols are equally
likely (probability = 0.5). It falls towards zero whenever one of the symbols becomes dominant at
the expense of the other symbol.

As an instructive exercise, suppose that all the symbols are equally likely. What does the
formula for H (equation (8)) reduce to? You may want to try this yourself before reading on.

3The program to create this graph is at http://www.lecb.ncifcrf.gov/ � toms/delila/hgraph.html

Tom Schneider’s Information Theory Primer 5

Equally likely means that Pi � 1 � M, so if we substitute this into the uncertainty equation we
get:

Hequiprobable � � M

∑
i � 1

1
M

log2
1
M

(9)

Since M is not a function of i, we can pull it out of the sum:

Hequiprobable � � � 1
M

log2
1
M

� M

∑
i � 1

1 (10)

� � �
1
M

log2
1
M � M� � log2

1
M

(11)� log2 M

which is the simple equation we started with. It can be shown that for a given number of symbols
(ie., M is fixed) the uncertainty H has its largest value only when the symbols are equally probable.
For example, an unbiased coin is harder to guess than a biased coin. As another exercise, what is
the uncertainty when there are 10 symbols and only one of them appears? (clue: lim

p 0
p log p � 0

by setting p � 1 � M and using l’Hôpital’s rule, so 0log2 0 � 0.)

What does it mean to say that a signal has 1.75 bits per symbol? It means that we can convert
the original signal into a string of 1’s and 0’s (binary digits), so that on the average there are 1.75
binary digits for every symbol in the original signal. Some symbols will need more binary digits
(the rare ones) and others will need fewer (the common ones). Here’s an example. Suppose we
have M � 4 symbols:

A C G T (12)

with probabilities (Pi):

PA � 1
2 ! PC � 1

4 ! PG � 1
8 ! PT � 1

8 ! (13)

which have surprisals (� log2 Pi):

uA � 1 bit ! uC � 2 bits ! uG � 3 bits ! uT � 3 bits ! (14)

so the uncertainty is

H � 1
2 " 1 # 1

4 " 2 # 1
8 " 3 # 1

8 " 3 � 1 $ 75 (bits per symbol) $ (15)

Let’s recode this so that the number of binary digits equals the surprisal:

A � 1
C � 01
G � 000
T � 001 (16)

Tom Schneider’s Information Theory Primer 6

so the string
ACAT GAAC (17)

which has frequencies the same as the probabilities defined above, is coded as

10110010001101 % (18)

14 binary digits were used to code for 8 symbols, so the average is 14/8 = 1.75 binary digits per
symbol. This is called a Fano code. Fano codes have the property that you can decode them
without needing spaces between symbols. Usually one needs to know the “reading frame”, but in
this example one can figure it out. In this particular coding (equations (16)), the first binary digit
distinguishes between the set containing A, (which we symbolize as A) and the set C & G & T , which
are equally likely. The second digit, used if the first digit is 0, distinguishes C from G & T . The
final digit distinguishes G from T . Because each choice is equally likely (in our original definition
of the probabilities of the symbols), every binary digit in this code carries 1 bit of information.
Beware! This won’t always be true. A binary digit can supply 1 bit only if the two sets represented
by the digit are equally likely (as rigged for this example). If they are not equally likely, one binary
digit supplies less than one bit. (Recall that H is at a maximum for equally likely probabilities.) So
if the probabilities were

PA ' 1
2
& PC ' 1

6
& PG ' 1

6
& PT ' 1

6
& (19)

there is no way to assign a (finite) code so that each binary digit has the value of one bit (by using
larger blocks of symbols, one can approach it).4 In the rigged example, there is no way to use
fewer than 1.75 binary digits per symbol, but we could be wasteful and use extra digits to represent
the signal. The Fano code does reasonably well by splitting the symbols into successive groups
that are equally likely to occur; you can read more about it in texts on information theory. The
uncertainty measure tells us what could be done ideally, and so tells us what is impossible. For
example, the signal with 1.75 bits per symbol could not be coded using only 1 binary digit per
symbol.

Tying the Ideas Together
In the beginning of this primer we took information to be a decrease in uncertainty. Now

that we have a general formula for uncertainty, (8), we can express information using this formula.
Suppose that a computer contains some information in its memory. If we were to look at individual
flip-flops, we would have an uncertainty Hbe f ore bits per flip-flop. Suppose we now clear part of
the computer’s memory (by setting the values there to zero), so that there is a new uncertainty,
smaller than the previous one: Ha f ter. Then the computer memory has lost an average of5

R ' Hbe f ore (Ha f ter (20)

bits of information per flip-flop. If the computer was completely cleared, then Ha f ter ' 0 and
R ' Hbe f ore.

4This is because the fractions in equations (19) evaluate to irrational numbers when the logarithm is base 2, and
since a Fano code divides by rational numbers, no binary Fano code can be made that exactly matches.

5The symbol R comes from Shannon. It stands for rate of information transmission.

Tom Schneider’s Information Theory Primer 7

Now consider a teletype receiving characters over a phone line. If there were no noise in the
phone line and no other source of errors, the teletype would print the text perfectly. With noise,
there is some uncertainty about whether a character printed is really the right one. So before a
character is printed, the teletype must be prepared for any of the letters, and this prepared state has
uncertainty Hbe f ore, while after each character has been received there is still some uncertainty,
Ha f ter. This uncertainty is based on the probability that the symbol that came through is not equal
to the symbol that was sent, and it measures the amount of noise.

Shannon gave an example of this in section 12 of [10] (pages 33-34 of [13]). A system with two
equally likely symbols transmitting every second would send at a rate of 1 bit per second without
errors. Suppose that the probability that a 0 is received when a 0 is sent is 0.99 and the probability
of a 1 received is 0.01. “These figures are reversed if a 1 is received.” Then the uncertainty after
receiving a symbol is Ha f ter) * 0 + 99log2 0 + 99 * 0 + 01log2 0 + 01) 0 + 081, so that the actual rate
of transmission is R) 1 * 0 + 081) 0 + 919 bits per second.6 The amount of information that gets
through is given by the decrease in uncertainty, equation (20).

Unfortunately many people have made errors because they did not keep this point clear. The
errors occur because people implicitly assume that there is no noise in the communication. When
there is no noise, R) Hbe f ore, as with the completely cleared computer memory. That is if there
is no noise, the amount of information communicated is equal to the uncertainty before commu-
nication. When there is noise and someone assumes that there isn’t any, this leads to all kinds of
confusing philosophies. One must always account for noise.

One Final Subtle Point. In the previous section you may have found it odd that I used the
word “flip-flop”. This is because I was intentionally avoiding the use of the word “bit”. The reason
is that there are two meanings to this word, as we mentioned before while discussing Fano coding,
and it is best to keep them distinct. Here are the two meanings for the word “bit”:

1. A binary digit, 0 or 1. This can only be an integer. These ‘bits’ are the individual pieces of
data in computers.

2. A measure of uncertainty, H, or information R. This can be any real number because it is an
average. It’s the measure that Shannon used to discuss communication systems.

6Shannon used the notation Hy , x - , meaning the conditional uncertainty at the receiver y given the message sent
from x, for what we call Ha f ter. He also used the term “equivocation”.

Tom Schneider’s Information Theory Primer 8

References
[1] T. D. Schneider, G. D. Stormo, L. Gold, and A. Ehrenfeucht. Information con-

tent of binding sites on nucleotide sequences. J. Mol. Biol., 188:415–431, 1986.
http://www.lecb.ncifcrf.gov/˜toms/paper/schneider1986/.

[2] T. D. Schneider. Information and entropy of patterns in genetic switches. In G. J. Erickson and
C. R. Smith, editors, Maximum-Entropy and Bayesian Methods in Science and Engineering,
volume 2, pages 147–154, Dordrecht, The Netherlands, 1988. Kluwer Academic Publishers.

[3] T. D. Schneider and G. D. Stormo. Excess information at bacteriophage T7 genomic promot-
ers detected by a random cloning technique. Nucleic Acids Res., 17:659–674, 1989.

[4] T. D. Schneider and R. M. Stephens. Sequence logos: A new way to
display consensus sequences. Nucleic Acids Res., 18:6097–6100, 1990.
http://www.lecb.ncifcrf.gov/˜toms/paper/logopaper/.

[5] N. D. Herman and T. D. Schneider. High information conservation implies that at least three
proteins bind independently to F plasmid incD repeats. J. Bacteriol., 174:3558–3560, 1992.

[6] P. P. Papp, D. K. Chattoraj, and T. D. Schneider. Information analysis of sequences that bind
the replication initiator RepA. J. Mol. Biol., 233:219–230, 1993.

[7] R. M. Stephens and T. D. Schneider. Features of spliceosome evolution and function inferred
from an analysis of the information at human splice sites. J. Mol. Biol., 228:1124–1136,
1992. http://www.lecb.ncifcrf.gov/˜toms/paper/splice/.

[8] T. D. Schneider. Sequence logos, machine/channel capacity, Maxwell’s demon, and molecu-
lar computers: a review of the theory of molecular machines. Nanotechnology, 5:1–18, 1994.
http://www.lecb.ncifcrf.gov/˜toms/paper/nano2/.

[9] P. K. Rogan and T. D. Schneider. Using information content and base frequencies to dis-
tinguish mutations from genetic polymorphisms in splice junction recognition sites. Human
Mutation, 6:74–76, 1995. http://www.lecb.ncifcrf.gov/˜toms/paper/colonsplice/.

[10] C. E. Shannon. A Mathematical Theory of Communication. Bell System Tech. J., 27:379–
423, 623–656, 1948. http://cm.bell-labs.com/cm/ms/what/shannonday/paper.html.

[11] J. R. Pierce. An Introduction to Information Theory: Symbols, Signals and Noise. Dover
Publications, Inc., New York, second edition, 1980.

[12] W. Sacco, W. Copes, C. Sloyer, and R. Stark. Information Theory: Saving Bits. Janson
Publications, Inc., Dedham, MA, 1988.

[13] N. J. A. Sloane and A. D. Wyner. Claude Elwood Shannon: Collected Papers. IEEE Press,
Piscataway, NJ, 1993.

[14] Thomas M. Cover and Joy A. Thomas. Elements of Information Theory. John Wiley & Sons,
Inc., N. Y., 1991.

Tom Schneider’s Information Theory Primer 9

[15] D. K. C. MacDonald. Information Theory and Its Applications to Taxonomy. J. Applied
Phys., 23:529–531, 1952.

[16] M. Tribus. Thermostatics and Thermodynamics. D. van Nostrand Company, Inc., Princeton,
N. J., 1961.

Tom Schneider’s Information Theory Primer 10

1 APPENDIX: A Tutorial On Logarithms

Understanding the Log Function. In the mathematical operation of addition we take two
numbers and join them to create a third:

1 . 1 / 2 0 (21)

We can repeat this operation:
1 . 1 . 1 / 3 0 (22)

Multiplication is the mathematical operation that extends this:

3 1 1 / 3 0 (23)

In the same way, we can repeat multiplication:

2 1 2 / 4 0 (24)

and
2 1 2 1 2 / 8 0 (25)

The extension of multiplication is exponentiation:

2 1 2 / 22 / 4 0 (26)

and
2 1 2 1 2 / 23 / 8 0 (27)

This is read “two raised to the third is eight”. Because exponentiation simply counts the number
of multiplications, the exponents add:

22 1 23 / 22 2 3 / 25 0 (28)

The number ‘2’ is called the base of the exponentiation. If we raise an exponent to another expo-
nent, the values multiply: 3

22 4 3 / 22 1 22 1 22 / 22 2 2 2 2 / 22 5 3 / 26 0 (29)

Tom Schneider’s Information Theory Primer 11

The exponential function y 6 2x is shown in this graph7:

0 1 2 3 4 5
 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32

x

y = 2
x

Now consider that we have a number and we want to know how many 2’s must be multiplied
together to get that number. For example, given that we are using ‘2’ as the base, how many 2’s
must be multiplied together to get 32? That is, we want to solve this equation:

2B 6 32 7 (30)

Of course, 25 6 32, so B 6 5. To be able to get a hold of this, mathematicians made up a new
function called the logarithm:

log2 32 6 5 7 (31)

We pronounce this as “the logarithm to the base 2 of 32 is 5”. It is the “inverse function” for
exponentiation:

2log2 a 6 a (32)

and
log2 8 2a 9 6 a 7 (33)

The logarithmic function y 6 log2 x is shown in this graph8:
7The program to create this graph is at http://www.lecb.ncifcrf.gov/ : toms/delila/expgraph.html
8The program to create this graph http://www.lecb.ncifcrf.gov/ : toms/delila/expgraph.html

Tom Schneider’s Information Theory Primer 12

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
 0

 1

 2

 3

 4

 5

x

y = log 2 x

This graph was created by switching the x and y of the exponential graph, which is the same as
flipping the curve over on a 45 ; line. Notice in particular that log2 < 1 =	> 0 and log2 < 0 =?> @ ∞.

The Addition Law. Consider this equation:

2a A b > 2a B 2b (34)

which is just a generalization of equation (28). Take the logarithm of both sides:

log2 2a A b > log2 C 2a B 2b D (35)

Exponentiation and the logarithm are inverse operations, so we can collapse the left side:

a E b > log2 C 2a B 2b D (36)

Now let’s be tricky and substitute: log2 x > a and log2 y > b:

log2 x E log2 y > log2 C 2log2 x B 2log2 y D (37)

Again, exponentiation and the logarithm are inverse operations, so we can collapse the two cases
on the right side:

log2 x E log2 y > log2 < x B y = (38)

Tom Schneider’s Information Theory Primer 13

This is the additive property that Shannon was interested in.

The “Pull Forward” Rule. From equation (32):

a F 2log2 a G (39)

Raise both sides to the u:
au F H 2log2 a I u G (40)

Now, we can combine the exponents by multiplying, as in (29):

au F 2u log2 a G (41)

Finally, take the log base 2 of both sides and collapse the right side:

log2 au F u log2 a (42)

This can be remembered as a rule that allows one to “pull” the exponent forward from inside the
logarithm.

How to Convert Between Different Bases. Calculators and computers generally don’t
calculate the logarithm to the base 2, but we can use a trick to make this easy. Start by letting:

x F logz a J logz b (43)

Rearrange it as:
logz a F x logz b G (44)

Now use a “reverse pull forward” (!):

logz a F logz bx (45)

and drop the logs:
a F bx G (46)

Now take the log base b:
logb a F logb bx G (47)

This simplifies to:
logb a F x G (48)

But we know what x is from equation (43):

logb a F logz a J logz b (49)

The conversion rule to get logarithms base 2 from any base z is:

log2 K a L?F logz K a LMJ logz K 2 L (50)

Tom Schneider’s Information Theory Primer 14

Notice that since the z does not appear on the left hand side it doesn’t matter what kind of logarithm
you have available, because you can always get to another base using this equation! Try this
example on your calculator:

log2 N 32 O	P logwhatever! N 32 O
logwhatever! N 2 O Q (51)

You should get ‘5’.

Tricks With Powers of 2. In calculus we learn about the natural logarithm with base e P
2 Q 718281828459045 QRQMQ 9 Calculations with this base can easily be done by a computer or calculator,
but they are difficult for most people to do in their head.

In contrast, the powers of 2 are easy to memorize and remember:

choices bits
M B
1 0
2 1
4 2
8 3

16 4
32 5
64 6

128 7
256 8
512 9

1024 10

where 2B P M and log2 M P B.
We can use this table and a trick to make quick estimates of the logs of higher numbers. Notice

that
210 P 1024 S 1000 P 103 Q (52)

So to take the log base 2 of 4 T 106, we think:

log2 N 4 T 106 O P log2 N 4 OVU log2 N 106 O (53)P 2 U log2 N 103 T 103 O (54)P 2 U log2 N 103 OVU log2 N 103 O (55)S 2 U log2 N 210 OVU log2 N 210 O (56)S 2 U 10 U 10 (57)S 22 (58)

The actual value is 21.93.

9Want to impress your friends by memorizing this number? Note that after the 2.7 (you are on your own for that!)
we have two 1828’s followed by a 45 W -90 W -45 W triangle.

